If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-4x=60
We move all terms to the left:
5x^2-4x-(60)=0
a = 5; b = -4; c = -60;
Δ = b2-4ac
Δ = -42-4·5·(-60)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{19}}{2*5}=\frac{4-8\sqrt{19}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{19}}{2*5}=\frac{4+8\sqrt{19}}{10} $
| 91-25+z=180 | | X÷(x+10)=-1/9 | | 114+7x-25=180 | | 7x-2+75+82=180 | | -x-(-6x)+7+2x-10=3(2x+7) | | 114+7x-25=180- | | 5p+31/3=10 | | b2− –7=8 | | x+2=-12 | | 29=7(g-9)+12 | | 24x-16x^2=8x | | m=0.56−0.25 | | 2x13=61 | | 2x/x+7=24 | | m/6=–10 | | m6=–10 | | 3(x-10)=81 | | 9v=10 | | 2(j+5)=40 | | k/12=2 | | k12=2 | | 2x2-4x=20 | | 59+53+x=180 | | 8x=5=36 | | x-10=-60 | | k9=-27 | | z+60=90 | | n=18/5(n+10)= | | 2x*7=180 | | H(t)=-16t^2+56t+25 | | 36+x=54+36 | | 5(x-1)+6(x+2)=9(x+3) |